extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xD5).1D4 = C23.5D20 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).1D4 | 320,369 |
(C22xD5).2D4 = D4:4D20 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 40 | 4+ | (C2^2xD5).2D4 | 320,449 |
(C22xD5).3D4 = M4(2):D10 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).3D4 | 320,452 |
(C22xD5).4D4 = C22:C4:D10 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).4D4 | 320,680 |
(C22xD5).5D4 = D20:18D4 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).5D4 | 320,825 |
(C22xD5).6D4 = D20.39D4 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 8+ | (C2^2xD5).6D4 | 320,829 |
(C22xD5).7D4 = C42:F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 40 | 4+ | (C2^2xD5).7D4 | 320,191 |
(C22xD5).8D4 = C42:2F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).8D4 | 320,192 |
(C22xD5).9D4 = C5:C2wrC4 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).9D4 | 320,202 |
(C22xD5).10D4 = C22:C4:F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).10D4 | 320,203 |
(C22xD5).11D4 = (C22xC4):F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).11D4 | 320,254 |
(C22xD5).12D4 = (C2xD4):F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).12D4 | 320,260 |
(C22xD5).13D4 = (C2xQ8):F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 80 | 8+ | (C2^2xD5).13D4 | 320,266 |
(C22xD5).14D4 = C24:2F5 | φ: D4/C1 → D4 ⊆ Out C22xD5 | 40 | 4 | (C2^2xD5).14D4 | 320,272 |
(C22xD5).15D4 = (C2xDic5):3D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).15D4 | 320,299 |
(C22xD5).16D4 = (C2xC4).21D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).16D4 | 320,301 |
(C22xD5).17D4 = C10.(C4:D4) | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).17D4 | 320,302 |
(C22xD5).18D4 = D5xC23:C4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).18D4 | 320,370 |
(C22xD5).19D4 = C40:6C4:C2 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).19D4 | 320,406 |
(C22xD5).20D4 = C5:2C8:D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).20D4 | 320,407 |
(C22xD5).21D4 = D4:3D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).21D4 | 320,408 |
(C22xD5).22D4 = C5:(C8:2D4) | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).22D4 | 320,409 |
(C22xD5).23D4 = D4.D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).23D4 | 320,410 |
(C22xD5).24D4 = C40:5C4:C2 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).24D4 | 320,411 |
(C22xD5).25D4 = Q8.D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).25D4 | 320,437 |
(C22xD5).26D4 = D20:4D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).26D4 | 320,438 |
(C22xD5).27D4 = C5:(C8:D4) | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).27D4 | 320,439 |
(C22xD5).28D4 = (C2xC8).D10 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).28D4 | 320,441 |
(C22xD5).29D4 = D10:1C8.C2 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).29D4 | 320,442 |
(C22xD5).30D4 = C5:2C8.D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).30D4 | 320,443 |
(C22xD5).31D4 = C42:D10 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).31D4 | 320,448 |
(C22xD5).32D4 = C8:2D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).32D4 | 320,492 |
(C22xD5).33D4 = C4.Q8:D5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).33D4 | 320,493 |
(C22xD5).34D4 = C20.(C4oD4) | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).34D4 | 320,494 |
(C22xD5).35D4 = C8.2D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).35D4 | 320,495 |
(C22xD5).36D4 = C2.D8:D5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).36D4 | 320,512 |
(C22xD5).37D4 = C8:3D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).37D4 | 320,513 |
(C22xD5).38D4 = C2.D8:7D5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).38D4 | 320,515 |
(C22xD5).39D4 = C24.14D10 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).39D4 | 320,586 |
(C22xD5).40D4 = C24.16D10 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).40D4 | 320,588 |
(C22xD5).41D4 = (C2xC4):3D20 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).41D4 | 320,618 |
(C22xD5).42D4 = (C2xC20).290D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).42D4 | 320,620 |
(C22xD5).43D4 = Dic10:D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).43D4 | 320,785 |
(C22xD5).44D4 = C40:12D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).44D4 | 320,786 |
(C22xD5).45D4 = D20:7D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).45D4 | 320,799 |
(C22xD5).46D4 = Dic10.16D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).46D4 | 320,800 |
(C22xD5).47D4 = C40:8D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).47D4 | 320,801 |
(C22xD5).48D4 = D20.17D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).48D4 | 320,814 |
(C22xD5).49D4 = C40.36D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).49D4 | 320,816 |
(C22xD5).50D4 = Q16:D10 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).50D4 | 320,1440 |
(C22xD5).51D4 = SD16:D10 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).51D4 | 320,1445 |
(C22xD5).52D4 = D40:C22 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 8+ | (C2^2xD5).52D4 | 320,1449 |
(C22xD5).53D4 = C42:3F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).53D4 | 320,201 |
(C22xD5).54D4 = D10.1D8 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).54D4 | 320,206 |
(C22xD5).55D4 = D10.1Q16 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).55D4 | 320,207 |
(C22xD5).56D4 = C20.C42 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).56D4 | 320,213 |
(C22xD5).57D4 = C20.24C42 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).57D4 | 320,233 |
(C22xD5).58D4 = M4(2):3F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | 8 | (C2^2xD5).58D4 | 320,238 |
(C22xD5).59D4 = C22:F5:C4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).59D4 | 320,255 |
(C22xD5).60D4 = D10.SD16 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).60D4 | 320,258 |
(C22xD5).61D4 = D10.Q16 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).61D4 | 320,264 |
(C22xD5).62D4 = D10:(C4:C4) | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | | (C2^2xD5).62D4 | 320,1037 |
(C22xD5).63D4 = M4(2):1F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | 8 | (C2^2xD5).63D4 | 320,1065 |
(C22xD5).64D4 = C2xD10.D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).64D4 | 320,1082 |
(C22xD5).65D4 = C2xD4:F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).65D4 | 320,1106 |
(C22xD5).66D4 = (C2xD4):6F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).66D4 | 320,1107 |
(C22xD5).67D4 = (C2xD4):7F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).67D4 | 320,1108 |
(C22xD5).68D4 = (C2xF5):D4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | | (C2^2xD5).68D4 | 320,1117 |
(C22xD5).69D4 = C2xQ8:2F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).69D4 | 320,1121 |
(C22xD5).70D4 = (C2xQ8):6F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 8+ | (C2^2xD5).70D4 | 320,1122 |
(C22xD5).71D4 = D5:C4wrC2 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | 8 | (C2^2xD5).71D4 | 320,1130 |
(C22xD5).72D4 = C4oD4:F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 40 | 8 | (C2^2xD5).72D4 | 320,1131 |
(C22xD5).73D4 = C4oD20:C4 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 8 | (C2^2xD5).73D4 | 320,1132 |
(C22xD5).74D4 = D4:F5:C2 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | 8 | (C2^2xD5).74D4 | 320,1133 |
(C22xD5).75D4 = C2xC23:F5 | φ: D4/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).75D4 | 320,1134 |
(C22xD5).76D4 = D10:2(C4:C4) | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).76D4 | 320,294 |
(C22xD5).77D4 = D4:2D5:C4 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).77D4 | 320,399 |
(C22xD5).78D4 = D10:D8 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).78D4 | 320,402 |
(C22xD5).79D4 = D10:SD16 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).79D4 | 320,405 |
(C22xD5).80D4 = Q8:2D5:C4 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).80D4 | 320,431 |
(C22xD5).81D4 = D10:2SD16 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).81D4 | 320,434 |
(C22xD5).82D4 = D10:Q16 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).82D4 | 320,440 |
(C22xD5).83D4 = (C8xD5):C4 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).83D4 | 320,487 |
(C22xD5).84D4 = C8:8D20 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).84D4 | 320,491 |
(C22xD5).85D4 = C8.27(C4xD5) | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).85D4 | 320,507 |
(C22xD5).86D4 = C8:7D20 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).86D4 | 320,510 |
(C22xD5).87D4 = D10:2Q16 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).87D4 | 320,514 |
(C22xD5).88D4 = D10:4(C4:C4) | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).88D4 | 320,614 |
(C22xD5).89D4 = C40:6D4 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).89D4 | 320,784 |
(C22xD5).90D4 = C40:14D4 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).90D4 | 320,798 |
(C22xD5).91D4 = D10:3Q16 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).91D4 | 320,815 |
(C22xD5).92D4 = C2xD8:3D5 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).92D4 | 320,1428 |
(C22xD5).93D4 = C2xSD16:3D5 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).93D4 | 320,1433 |
(C22xD5).94D4 = C2xQ8.D10 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).94D4 | 320,1437 |
(C22xD5).95D4 = D5xC4oD8 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).95D4 | 320,1439 |
(C22xD5).96D4 = D10.10D8 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).96D4 | 320,231 |
(C22xD5).97D4 = C2xC40:C4 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).97D4 | 320,1057 |
(C22xD5).98D4 = C2xD5.D8 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).98D4 | 320,1058 |
(C22xD5).99D4 = (C2xC8):6F5 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).99D4 | 320,1059 |
(C22xD5).100D4 = D10:6(C4:C4) | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).100D4 | 320,1103 |
(C22xD5).101D4 = C22xC4:F5 | φ: D4/C4 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).101D4 | 320,1591 |
(C22xD5).102D4 = C22.58(D4xD5) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).102D4 | 320,291 |
(C22xD5).103D4 = (C2xC4):9D20 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).103D4 | 320,292 |
(C22xD5).104D4 = D10:3(C4:C4) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).104D4 | 320,295 |
(C22xD5).105D4 = (D4xD5):C4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).105D4 | 320,397 |
(C22xD5).106D4 = D4:(C4xD5) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).106D4 | 320,398 |
(C22xD5).107D4 = D4:D20 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).107D4 | 320,400 |
(C22xD5).108D4 = D10.12D8 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).108D4 | 320,401 |
(C22xD5).109D4 = D20.8D4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).109D4 | 320,403 |
(C22xD5).110D4 = D10.16SD16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).110D4 | 320,404 |
(C22xD5).111D4 = (Q8xD5):C4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).111D4 | 320,429 |
(C22xD5).112D4 = Q8:(C4xD5) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).112D4 | 320,430 |
(C22xD5).113D4 = D10.11SD16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).113D4 | 320,432 |
(C22xD5).114D4 = Q8:2D20 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).114D4 | 320,433 |
(C22xD5).115D4 = D10:4Q16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).115D4 | 320,435 |
(C22xD5).116D4 = D10.7Q16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).116D4 | 320,436 |
(C22xD5).117D4 = D5xC4wrC2 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 40 | 4 | (C2^2xD5).117D4 | 320,447 |
(C22xD5).118D4 = C8:(C4xD5) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).118D4 | 320,488 |
(C22xD5).119D4 = D10.12SD16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).119D4 | 320,489 |
(C22xD5).120D4 = D10.17SD16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).120D4 | 320,490 |
(C22xD5).121D4 = C40:20(C2xC4) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).121D4 | 320,508 |
(C22xD5).122D4 = D10.13D8 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).122D4 | 320,509 |
(C22xD5).123D4 = D10.8Q16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).123D4 | 320,511 |
(C22xD5).124D4 = C24.48D10 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).124D4 | 320,582 |
(C22xD5).125D4 = C24.12D10 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).125D4 | 320,583 |
(C22xD5).126D4 = D10:5(C4:C4) | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).126D4 | 320,616 |
(C22xD5).127D4 = D20:D4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).127D4 | 320,783 |
(C22xD5).128D4 = D10:6SD16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).128D4 | 320,796 |
(C22xD5).129D4 = D10:8SD16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).129D4 | 320,797 |
(C22xD5).130D4 = D10:5Q16 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).130D4 | 320,813 |
(C22xD5).131D4 = C2xD10.12D4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).131D4 | 320,1160 |
(C22xD5).132D4 = C2xD10.13D4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).132D4 | 320,1177 |
(C22xD5).133D4 = D5xC22.D4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).133D4 | 320,1324 |
(C22xD5).134D4 = C2xD8:D5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).134D4 | 320,1427 |
(C22xD5).135D4 = C2xD40:C2 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).135D4 | 320,1431 |
(C22xD5).136D4 = C2xSD16:D5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).136D4 | 320,1432 |
(C22xD5).137D4 = C2xQ16:D5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).137D4 | 320,1436 |
(C22xD5).138D4 = D5xC8:C22 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).138D4 | 320,1444 |
(C22xD5).139D4 = D5xC8.C22 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).139D4 | 320,1448 |
(C22xD5).140D4 = C42:6F5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 40 | 4 | (C2^2xD5).140D4 | 320,200 |
(C22xD5).141D4 = (C22xF5):C4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).141D4 | 320,204 |
(C22xD5).142D4 = D10.18D8 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).142D4 | 320,212 |
(C22xD5).143D4 = C2xD10.3Q8 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).143D4 | 320,1100 |
(C22xD5).144D4 = (C22xC4):7F5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).144D4 | 320,1102 |
(C22xD5).145D4 = C2xD20:C4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).145D4 | 320,1104 |
(C22xD5).146D4 = (D4xC10):C4 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).146D4 | 320,1105 |
(C22xD5).147D4 = C2xQ8:F5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).147D4 | 320,1119 |
(C22xD5).148D4 = (C2xQ8):4F5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).148D4 | 320,1120 |
(C22xD5).149D4 = C24:4F5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 40 | | (C2^2xD5).149D4 | 320,1138 |
(C22xD5).150D4 = C22xC22:F5 | φ: D4/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).150D4 | 320,1607 |
(C22xD5).151D4 = D5xC2.C42 | φ: trivial image | 160 | | (C2^2xD5).151D4 | 320,290 |
(C22xD5).152D4 = D5xD4:C4 | φ: trivial image | 80 | | (C2^2xD5).152D4 | 320,396 |
(C22xD5).153D4 = D5xQ8:C4 | φ: trivial image | 160 | | (C2^2xD5).153D4 | 320,428 |
(C22xD5).154D4 = D5xC4.Q8 | φ: trivial image | 160 | | (C2^2xD5).154D4 | 320,486 |
(C22xD5).155D4 = D5xC2.D8 | φ: trivial image | 160 | | (C2^2xD5).155D4 | 320,506 |
(C22xD5).156D4 = C2xD5xC22:C4 | φ: trivial image | 80 | | (C2^2xD5).156D4 | 320,1156 |
(C22xD5).157D4 = C2xD5xC4:C4 | φ: trivial image | 160 | | (C2^2xD5).157D4 | 320,1173 |
(C22xD5).158D4 = C2xD5xD8 | φ: trivial image | 80 | | (C2^2xD5).158D4 | 320,1426 |
(C22xD5).159D4 = C2xD5xSD16 | φ: trivial image | 80 | | (C2^2xD5).159D4 | 320,1430 |
(C22xD5).160D4 = C2xD5xQ16 | φ: trivial image | 160 | | (C2^2xD5).160D4 | 320,1435 |